Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation
نویسندگان
چکیده
Rat Schwann cells cultured with dorsal root ganglion neurons in a serum-free defined medium fail to ensheathe or myelinate axons or assemble basal laminae. Replacement of defined medium with medium that contains human placental serum (HPS) and chick embryo extract (EE) results in both basal lamina and myelin formation. In the present study, the individual effects of HPS and EE on basal lamina assembly and on myelin formation by Schwann cells cultured with neurons have been examined. Some batches of HPS were unable to promote myelin formation in the absence of EE, as assessed by quantitative evaluation of cultures stained with Sudan black; such HPS also failed to promote basal lamina assembly, as assessed by immunofluorescence using antibodies against laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of EE or L-ascorbic acid with such HPS led to the formation of large quantities of myelin and to the assembly of basal laminae. Pretreatment of EE with ascorbic acid oxidase abolished the EE activity, whereas trypsin did not. Other batches of HPS were found to promote both basal lamina and myelin formation in the absence of either EE or ascorbic acid. Ascorbic acid oxidase treatment or dialysis of these batches of HPS abolished their ability to promote Schwann cell differentiation, whereas the subsequent addition of ascorbic acid restored that ability. Ascorbic acid in the absence of serum was relatively ineffective in promoting either basal lamina or myelin formation. Fetal bovine serum was as effective as HPS in allowing ascorbic acid (and several analogs but not other reducing agents) to manifest its ability to promote Schwann cell differentiation. We suggest that ascorbic acid promotes Schwann cell myelin formation by enabling the Schwann cell to assemble a basal lamina, which is required for complete differentiation.
منابع مشابه
Differentiation of axon-related Schwann cells in vitro: II. Control of myelin formation by basal lamina.
Several recent observations suggest that Schwann cell (SC) differentiation, including myelin formation, is dependent upon the development of basal lamina which characteristically surrounds each axon-SC unit in peripheral nerve. This dependence can be tested in a neuron-SC culture system developed in our laboratory in which SC differentiation, including basal lamina formation and myelination, is...
متن کاملAxonal Regulation of Schwann Cell Integrin Expression Suggests a Role for ct6 4 in Myelination
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two i...
متن کاملRequirement of cAMP Signaling for Schwann Cell Differentiation Restricts the Onset of Myelination
Isolated Schwann cells (SCs) respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1). To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of i...
متن کاملInhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule.
The specific axonal and Schwann cell surface molecules that mediate the initiation of myelination have not been identified. We have used cocultures of purified rat dorsal root ganglion neurons and Schwann cells and purified polyclonal antibodies to the L1 adhesion molecule to study the role of L1 in myelin formation. Schwann cells were first arrested in a basal-lamina-free premyelination stage ...
متن کاملTargeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination.
Members of the arenavirus family, famous for their hemorrhagic syndromes, cause distinct neurological disorders; however, cellular and molecular targets as well as pathogenesis of peripheral nervous system disorders associated with these viruses are unknown. Using noncytolytic lymphocytic choriomeningitis virus, the prototype arenavirus, and pseudotyped Lassa fever virus, we showed that the Sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 105 شماره
صفحات -
تاریخ انتشار 1987